RD74LVC374B

Octal D-type Flip Flops with 3-state Outputs
REJ03D0382-0100
Rev. 1.00
Nov. 26, 2004

Description

The RD74LVC374B has eight edge trigger D type flip flops with three state outputs in a 20 pin package. Data at the D inputs meeting set up requirements are transferred to the Q outputs on positive going transitions of the clock input. When the clock input goes low, data at the D inputs will be retained at the outputs until clock input returns high again. When a high logic level is applied to the output control input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements. Low voltage and high-speed operation is suitable at the battery drive product (note type personal computer) and low power consumption extends the life of a battery for long time operation.

Features

- $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V
- All inputs V_{IH} (Max. $)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right.$ to 5.5 V$)$
- All outputs $\mathrm{V}_{\text {OUt }}($ Max. $)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right.$ or output off state $)$
- Typical V_{OL} ground bounce $<0.8 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- Typical V_{OH} undershoot $>2.0 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- High output current $\pm 4 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}\right)$
$\pm 8 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}\right)$
$\pm 12 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right)$
$\pm 24 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to 5.5 V$)$
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
RD74LVC374BFPEL	SOP-20 pin (JEITA)	FP-20DAV	FP	EL (2,000 pcs/reel)
RD74LVC374BTELL	TSSOP-20 pin	TTP-20DAV	T	ELL $(2,000 \mathrm{pcs} / \mathrm{reel})$

Function Table

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V_{CC}	-0.5 to 7.0	V	
Input diode current	I_{1}	-50	mA	$\mathrm{V}_{1}=-0.5 \mathrm{~V}$
Input voltage	V	-0.5 to 7.0	V	
Output diode current	lok	-50	mA	$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$
		50		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {cc }}+0.5 \mathrm{~V}$
Output voltage	V_{0}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	Output "H" or "L"
		-0.5 to 7.0		Output "Z" or V_{cc} :OFF
Output current	10	± 50	mA	
V_{CC}, GND current / pin	$\mathrm{ICC}^{\text {or }} \mathrm{I}_{\text {GND }}$	100	mA	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	

Note: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	$\mathrm{V}_{\text {cc }}$	1.5 to 5.5	V	Data hold
		1.65 to 5.5		At operation
Input / output voltage	V_{1}	0 to 5.5	V	G, CK, D
	$\mathrm{V}_{\text {O }}$	0 to V CC		Output "H" or "L"
		0 to 5.5		Output "Z" or $\mathrm{V}_{\text {cc }}$:OFF
Operating temperature	Ta	-40 to 85	${ }^{\circ} \mathrm{C}$	
Output current	IOH	-4	mA	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$
		-8		$\mathrm{V}_{C \mathrm{CC}}=2.3 \mathrm{~V}$
		-12		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
		-24		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.5 V
	loL	4	mA	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$
		8		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
		12		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
		24		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 5.5 V
Input rise / fall time*1	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	20	ns/V	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V
		10		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.5 V

Notes: 1. This item guarantees maximum limit when one input switches.
Waveform: Refer to test circuit of switching characteristics.

Electrical Characteristics

Item	Symbol	Vcc (V)	$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions
			Min	Max		
Input voltage	V_{IH}	1.65 to 1.95	$\mathrm{V}_{\mathrm{cc}} \times 0.65$	-	V	
		2.3 to 2.7	1.7	-		
		2.7 to 3.6	2.0	-		
		4.5 to 5.5	$\mathrm{V}_{\mathrm{Cc} \times} \times 0.7$	-		
	VIL	1.65 to 1.95	-	$\mathrm{V}_{\mathrm{Cc}} \times 0.35$		
		2.3 to 2.7	-	0.7		
		2.7 to 3.6	-	0.8		
		4.5 to 5.5	-	$\mathrm{V}_{\mathrm{CC}} \times 0.3$		
Output voltage	V_{OH}	1.65 to 5.5	$\mathrm{V}_{\mathrm{cc}}-0.2$	-	V	$\mathrm{l} \mathrm{OH}=-100 \mu \mathrm{~A}$
		1.65	1.2	-		$\mathrm{loh}^{\prime}=-4 \mathrm{~mA}$
		2.3	1.7	-		$\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$
		2.7	2.2	-		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$
		3.0	2.4	-		
		3.0	2.2	-		$\mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$
		4.5	3.8	-		
	VoL	1.65 to 5.5	-	0.2		$\mathrm{loL}=100 \mu \mathrm{~A}$
		1.65	-	0.45		$\mathrm{loL}=4 \mathrm{~mA}$
		2.3	-	0.7		$\mathrm{loL}=8 \mathrm{~mA}$
		2.7	-	0.4		$\mathrm{loL}=12 \mathrm{~mA}$
		3.0	-	0.55		$\mathrm{loL}=24 \mathrm{~mA}$
		4.5	-	0.55		
Input current	I_{1}	0 to 5.5	-	± 5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND
Output leak current	loff	0	-	± 5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUt }}=5.5 \mathrm{~V}$
Off state output current	loz	2.7 to 5.5	-	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \text { or GND } \end{aligned}$
Quiescent supply current	Icc	2.7 to 3.6	-	± 5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=3.6$ to 5.5 V
		2.7 to 5.5	-	5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ or GND
	$\Delta l_{\text {cc }}$	2.7 to 3.6	-	500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=$ one input at $\left(\mathrm{V}_{\mathrm{CC}}-0.6\right) \mathrm{V}$, other inputs at $V_{C C}$ or GND

Switching Characteristics

Note: 1. This parameter is characterized but not tested.
tos $_{\text {LH }}=\mid$ tpLHm - t $_{\text {PLHn }} \mid$, tos $_{\text {HL }}=\mid$ t $_{\text {PHLm }}-\mathrm{t}_{\text {PHLL }} \mid$

Operating Characteristics

Item	Symbol	Vcc (V)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			Unit	Test Conditions
			Min	Typ	Max		
Power dissipation capacitance	$\mathrm{C}_{\text {PD }}$	1.8	-	25	-	pF	$\mathrm{f}=10 \mathrm{MHz}$
		2.5	-	26	-		
		3.3	-	28	-		
		5.0	-	32	-		

Test Circuit

Note: 1. C_{L} includes probe and jig capacitance.

Waveforms - 1

Note: Input waveform: PRR = 10 MHz , duty cycle 50%.

Waveforms - 2

Note: Input waveform: PRR = 10 MHz , duty cycle 50%.

Waveforms - 3

$\mathrm{V}_{\text {cc }}(\mathrm{V})$	INPUT		Vref	$\mathrm{V}_{\text {TT }}$	CL	RL	$\Delta \mathrm{V}$
	V_{IH}	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\text {f }}$					
$\mathrm{V}_{\mathrm{CC}}=1.8 \pm 0.15 \mathrm{~V}$	VCC	$\leq 2 \mathrm{~ns}$	1/2 V ${ }_{\text {cc }}$	$2 \times \mathrm{Vcc}$	30 pF	$1.0 \mathrm{k} \Omega$	0.15 V
$\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$	Vcc	$\leq 2 \mathrm{~ns}$	$1 / 2 \mathrm{~V}_{\mathrm{CC}}$	$2 \times V_{C C}$	30 pF	500Ω	0.15 V
$V_{C C}=2.7 \mathrm{~V}$	2.7 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V
$\mathrm{V}_{C C}=3.3 \pm 0.3 \mathrm{~V}$	2.7 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V
$\mathrm{V}_{C C}=5.0 \pm 0.5 \mathrm{~V}$	Vcc	≤ 2.5 ns	$1 / 2 \mathrm{~V}$ cc	$2 \times \mathrm{V}$ cc	50 pF	500Ω	0.3 V

Notes: 1. Input waveform : PRR $=10 \mathrm{MHz}$, duty cycle 50%.
2. Waveform - A shows input conditions such that the output is "L" level when enable by the output control.
3. Waveform - B shows input conditions such that the output is " H " level when enable by the output control.

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Blidg, 2-6--2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's Renesas Technology Corp. convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
2. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
3. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
4. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
5. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
6. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

